Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

μ_{3}-Chlorido-tris(bis\{1-[2-(dimethyl-amino)ethyl]-3-methylimidazol-2-ylidene\}silver(I)) dichloride

Christoph Topf, Sebastian Leitner and Uwe Monkowius*

Johannes Kepler Universität Linz, Institut für Anorganische Chemie, Altenbergerstrasse 69, A-4040 Linz, Austria
Correspondence e-mail: uwe.monkowius@jku.at
Received 31 January 2012; accepted 2 February 2012
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.034 ; w R$ factor $=0.095$; data-to-parameter ratio $=16.5$.

In the crystal structure of the title compound, $\left[\mathrm{Ag}_{3} \mathrm{Cl}-\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$, the Ag^{1} ion, which is located on a twofold rotation axis, exists in a T -shape coordination environment. Two carbene C atoms of the N -heterocyclic carbene (NHC) ligands are bonded tightly forming a slightly bent $\left[\mathrm{Ag}(\mathrm{NHC})_{2}\right]^{+}$cation $\left[\mathrm{C}-\mathrm{Ag}-\mathrm{C}\right.$ angle $\left.=162.80(18)^{\circ}\right]$. Three of these complex cations are further aggregated by one bridging chloride anion, which is lying on a threefold rotoinversion axis and is only loosely binding to the Ag^{+}ions. The N atom of the amine group is not engaged in any coordinative bond.

Related literature

For related literature concerning similar N -heterocyclic carbenes, see: Topf, Hirtenlehner, Fleck et al. (2011); Topf, Hirtenlehner \& Monkowius (2011); Leitner et al. (2011). For related structures, see: Hirtenlehner et al. (2011); Wang et al. (2006). For details of the preparation, see: Topf, Hirtenlehner, Zabel et al. (2011).

Experimental

Crystal data
$\left[\mathrm{Ag}_{3} \mathrm{Cl}\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
$M_{r}=1349.34$
Trigonal, $R \overline{3} c$
$a=12.7300(16) \AA$
$c=66.789$ (12) A
$V=9373$ (2) \AA^{3}
$Z=6$
Mo $K \alpha$ radiation
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.50 \times 0.36 \times 0.31 \mathrm{~mm}$

Data collection

Bruker SMART X2S diffractometer Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.61, T_{\text {max }}=0.73$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.095$
$S=1.03$
1859 reflections

18593 measured reflections 1859 independent reflections 1590 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

$$
\begin{aligned}
& 113 \text { parameters } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& \Delta \rho_{\max }=1.28 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \text { e } \AA^{-3}
\end{aligned}
$$

Data collection: APEX2 and GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Professor Günther Knör for fruitful discussion and generous support of the experimental work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5811).

References

Bruker (2009). APEX2, GIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hirtenlehner, C., Krims, C., Hölbling, J., List, M., Zabel, M., Fleck, M., Berger, R. J. F., Schoefberger, W. \& Monkowius, U. (2011). Dalton Trans. 40, 98999910.

Leitner, S., List, M. \& Monkowius, U. (2011). Z. Naturforsch. Teil B, 66, 12551260.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Topf, C., Hirtenlehner, C., Fleck, M., List, M. \& Monkowius, U. (2011). Z. Anorg. Allg. Chem. 637, 2129-2134.
Topf, C., Hirtenlehner, C. \& Monkowius, U. (2011). J. Organomet. Chem. 696, 3274-3278.
Topf, C., Hirtenlehner, C., Zabel, M., List, M., Fleck, M. \& Monkowius, U. (2011). Organometallics, pp. 2755-2764.

Wang, X., Liu, S., Wenig, L.-H. \& Jin, G.-X. (2006). Organometallics, 25, 35653569.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m272 [doi:10.1107/S1600536812004473]

μ_{3}-Chlorido-tris(bis\{1-[2-(dimethylamino)ethyl]-3-methylimidazol-2-ylidene\}silver(I)) dichloride

Christoph Topf, Sebastian Leitner and Uwe Monkowius

Comment

In the course of our studies on gold- and silver-complexes bearing functionalized N -heterocyclic carbenes (NHCs), we became interested in examples with amino groups containing side arms at a nitrogen atom of the NHC ligands (Topf, Hirtenlehner, Fleck et al. (2011); Topf, Hirtenlehner \& Monkowius (2011); Leitner et al., 2011; Hirtenlehner et al., 2011). Just recently, we published the multifarious coordination patterns of such silver complexes (Topf, Hirtenlehner, Zabel et al., 2011): E.g., in the ionic compound $\left[\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2} \mathrm{Ag}\right]\left[\mathrm{AgCl}_{2}\right]$, which is formed from the respective imidazolium chloride and $\mathrm{Ag}_{2} \mathrm{O}$ in dichloromethane, the ions are aggregated to infinite chains with short silver-silver contacts. Treatment of this complex with HBF_{4} yields the cluster $\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{4} \mathrm{Ag}_{10} \mathrm{Cl}_{10}$ with the carbene carbon atom binding in a unusual μ_{2}-fashion to two silver atoms. In an attempt to prepare this cluster, crystals of the title compound were formed representing the third silver chloride complex in the series of this ligand. The formation of this complex is easily rationalized by the precipitation of AgCl from $\left[\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2} \mathrm{Ag}\right]\left[\mathrm{AgCl}_{2}\right]$ in solution.
The silver atom is in a slightly bent linear coordination with an Ag1- C 1 bond length of 2.099 (3) \AA and an angle $\mathrm{C} 1-$ $\mathrm{Ag} 1-\mathrm{Cl}^{\mathrm{i}}$ of $162.8(2)^{\circ}$. Perpendicular to the $\mathrm{C} 1-\mathrm{Ag} 1-\mathrm{Cl}^{\mathrm{i}}$ vector, a chloride anion is loosely binding with an $\mathrm{Ag} 1-$ $\mathrm{Cl1}$ bond length of 2.981 (1) \AA. The chloride $\mathrm{Cl1}$ is linking three $\left[\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2} \mathrm{Ag}\right]^{+}$units in a μ_{3}-fashion forming a D_{3} symmteric trimeric aggregate. The net $2+$ charge is balanced by two non-interacting chloride ions. Within other cationic species of the type $\left[(\mathrm{NHC})_{2} \mathrm{Ag}\right]^{+}$, the imidazole ring planes are usually found in a coplanar arrangement due to a higher π backbonding contribution compared to a perpendicular orientation. Presumably because of steric reasons, the $\left[\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2} \mathrm{Ag}\right]^{+}$moiety features an arrangement with both imidazole ring planes approaching a perpendicular orientation [$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{i}-\mathrm{N} 1^{i} 89.8^{\circ}$]. The distance between two silver atoms within the trimer is $5.164 \AA$, which is well beyond the range of argentophilic interactions. It should be noted, that this aggregation pattern is very rare and to the best of our knowledge reported only for $\left\{\left[(\mathrm{NHC})_{2} \mathrm{Ag}\right]_{3}\left(\mu_{3}-\mathrm{I}\right)\right\} \mathrm{I}_{2}(\mathrm{NHC}=1$-methyl-3-picolyl-imidazol-2-ylidene) (Wang et al., 2006) and $\left\{\left[(\mathrm{NHC})_{2} \mathrm{Au}\right]_{3}\left(\mu_{3}-\mathrm{Br}\right)\right\} \mathrm{Br}_{2}$ ($\mathrm{NHC}=1$-methyl-3-benzyl-imidazol-2-ylidene) (Hirtenlehner et al., 2011).

Experimental

Crystals of the title compound were formed in an attempt to synthesize the silver cluster $\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{4} \mathrm{Ag}_{10} \mathrm{Cl}_{10}$ according to a literature procedure (Topf, Hirtenlehner, Zabel et al., 2011).

Refinement

The hydrogen atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methylen and aromatic hydrogen atoms. The highest residual electron density peak is located $1.28 \AA$ from H9A and the deepest hole is located $0.53 \AA$ from C9.

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figure 1

View of the title compound with the atom numbering scheme (symmetry code: (i) $x-y+1 / 3,-y+2 / 3,-z+1 / 6$).
Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Ag1

i

Figure 2
$\left[\mathrm{Ag}_{3} \mathrm{Cl}\right]^{2+}$ cation in the crystals of the title compound. The H atoms and the methyl and 2-dimethyl-amino-ethyl groups are omitted for the sake of clarity (symmetry codes: (ii) $-y+1, x-y, z$; (iv) $y+1 / 3, x-1 / 3,-z+1 / 6$).
μ_{3}-Chlorido-tris(bis\{1-[2-(dimethylamino)ethyl]-3-methylimidazol-2-ylidene\}silver(I)) dichloride

Crystal data

$\left[\mathrm{Ag}_{3} \mathrm{Cl}\left(\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{3}\right)_{2}\right] \mathrm{Cl}_{2}$
$M_{r}=1349.34$
Trigonal, $R \overline{3} c$
$a=12.7300(16) \AA$
$c=66.789(12) \AA$
$V=9373(2) \AA^{3}$
$Z=6$
$F(000)=4176$
$D_{\mathrm{x}}=1.434 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Prism, colourless
$0.50 \times 0.36 \times 0.31 \mathrm{~mm}$

Data collection

Bruker SMART X2S
diffractometer
Radiation source: sealed MicroFocus tube
Doubly curved silicon crystal monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.61, T_{\text {max }}=0.73$

18593 measured reflections
1859 independent reflections
1590 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.095$
$S=1.03$
1859 reflections
113 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=25.1^{\circ}, \theta_{\min }=3.1^{\circ} \\
& h=-15 \rightarrow 14 \\
& k=-15 \rightarrow 15 \\
& l=-79 \rightarrow 79
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ag1	$0.90085(3)$	0.3333	0.0833	$0.03038(16)$
C6	$1.1504(3)$	$0.5164(4)$	$0.05466(6)$	$0.0422(9)$
H6A	1.1374	0.5764	0.0617	0.063^{*}
H6B	1.2184	0.558	0.0453	0.063^{*}
H6C	1.1689	0.4703	0.0644	0.063^{*}
C1	$0.9354(3)$	$0.3530(3)$	$0.05243(5)$	$0.0257(7)$
N2	$0.8610(3)$	$0.2965(3)$	$0.03679(4)$	$0.0284(6)$
C5	$0.7252(4)$	$0.0798(4)$	$0.03044(7)$	$0.0543(11)$
H5A	0.6394	0.0146	0.0315	0.065^{*}
H5B	0.7471	0.0909	0.0161	0.065^{*}
N1	$1.0411(2)$	$0.4340(2)$	$0.04359(4)$	$0.0271(6)$
C4	$0.7366(3)$	$0.1961(4)$	$0.03843(6)$	$0.0388(9)$
H4A	0.682	0.2158	0.0308	0.047^{*}
H4B	0.7112	0.1848	0.0526	0.047^{*}
C3	$0.9192(3)$	$0.3417(3)$	$0.01870(6)$	$0.0358(9)$
H3	0.8853	0.3163	0.0057	0.043^{*}
C2	$1.0327(3)$	$0.4284(3)$	$0.02306(5)$	$0.0341(8)$
H2	1.095	0.4766	0.0138	0.041^{*}
N3	$0.8016(3)$	$0.0410(3)$	$0.04089(6)$	$0.0475(9)$
C8	$0.7953(7)$	$-0.0580(6)$	$0.02927(11)$	$0.101(2)$
H8A	0.842	-0.0898	0.036	0.151^{*}
H8B	0.829	-0.0286	0.0159	0.151^{*}

supplementary materials

H8C	0.7104	-0.1226	0.028	0.151^{*}
C9	$0.7645(7)$	$0.0065(6)$	$0.06074(11)$	$0.114(3)$
H9A	0.772	0.0761	0.0682	0.172^{*}
H9B	0.8157	-0.0217	0.067	0.172^{*}
H9C	0.6797	-0.0591	0.0609	0.172^{*}
Cl1	0.6667	0.3333	0.0833	$0.0307(4)$
C12	0.3333	0.6667	$0.00857(2)$	$0.0344(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.0353(2)$	$0.0290(2)$	$0.0247(2)$	$0.01451(11)$	$0.00056(7)$	$0.00112(14)$
C6	$0.032(2)$	$0.035(2)$	$0.048(2)$	$0.0078(17)$	$-0.0022(17)$	$-0.0035(17)$
C1	$0.0288(17)$	$0.0288(17)$	$0.0267(18)$	$0.0197(15)$	$-0.0005(14)$	$0.0007(13)$
N2	$0.0256(14)$	$0.0345(16)$	$0.0289(16)$	$0.0180(13)$	$0.0007(12)$	$-0.0018(12)$
C5	$0.040(2)$	$0.053(3)$	$0.057(3)$	$0.013(2)$	$-0.003(2)$	$-0.005(2)$
N1	$0.0246(14)$	$0.0259(14)$	$0.0314(15)$	$0.0131(12)$	$0.0013(11)$	$0.0016(12)$
C4	$0.0238(18)$	$0.046(2)$	$0.044(2)$	$0.0161(17)$	$-0.0016(15)$	$-0.0062(18)$
C3	$0.040(2)$	$0.048(2)$	$0.0245(19)$	$0.0255(18)$	$0.0000(15)$	$0.0000(15)$
C2	$0.039(2)$	$0.039(2)$	$0.0290(19)$	$0.0233(17)$	$0.0095(15)$	$0.0072(15)$
N3	$0.0411(19)$	$0.0327(18)$	$0.061(2)$	$0.0126(15)$	$-0.0096(17)$	$-0.0030(16)$
C8	$0.108(5)$	$0.066(4)$	$0.121(6)$	$0.039(4)$	$0.011(4)$	$-0.010(4)$
C9	$0.132(7)$	$0.081(5)$	$0.069(4)$	$0.007(4)$	$-0.034(4)$	$0.012(3)$
C11	$0.0299(6)$	$0.0299(6)$	$0.0323(10)$	$0.0150(3)$	0	0
C12	$0.0356(5)$	$0.0356(5)$	$0.0319(7)$	$0.0178(3)$	0	0

Geometric parameters (\AA, ${ }^{\circ}$)

Ag1- $\mathrm{Cl}^{\text {i }}$	2.099 (3)	N1-C2	1.374 (5)
$\mathrm{Ag} 1-\mathrm{C} 1$	2.099 (3)	C4-H4A	0.99
C6-N1	1.458 (5)	C4-H4B	0.99
C6-H6A	0.98	C3-C2	1.340 (5)
C6-H6B	0.98	C3-H3	0.95
C6-H6C	0.98	C2-H2	0.95
$\mathrm{C} 1-\mathrm{N} 2$	1.350 (5)	N3-C9	1.402 (8)
C1-N1	1.355 (4)	N3-C8	1.447 (7)
N2-C3	1.383 (5)	C8-H8A	0.98
N2-C4	1.459 (5)	С8-H8B	0.98
C5-N3	1.469 (6)	C8-H8C	0.98
C5-C4	1.511 (6)	C9-H9A	0.98
C5-H5A	0.99	C9-H9B	0.98
C5-H5B	0.99	C9-H9C	0.98
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{C} 1$	162.80 (18)	N2-C4-H4B	109.4
N1-C6-H6A	109.5	C5-C4-H4B	109.4
N1-C6-H6B	109.5	H4A-C4-H4B	108.0
H6A-C6-H6B	109.5	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	106.6 (3)
N1-C6-H6C	109.5	C2-C3-H3	126.7
H6A-C6- H6C	109.5	N2-C3-H3	126.7
H6B-C6-H6C	109.5	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	106.5 (3)

supplementary materials

$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$103.5(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{Ag} 1$	$130.4(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{Ag} 1$	$126.0(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$111.5(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$125.0(3)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4$	$123.4(3)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4$	$114.0(3)$
$\mathrm{N} 3-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.8
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.8
$\mathrm{~N} 3-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	108.8
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	108.8
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	107.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$111.9(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	$123.7(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6$	$124.4(3)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$111.3(3)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	126.8
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2$	126.8
$\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 8$	$111.8(5)$
$\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 5$	$112.2(5)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 5$	$106.3(4)$
$\mathrm{N} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.5
$\mathrm{~N} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.5
N3-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
N3-C9-H9A	109.5
N3-C9-H9B	109.5
H9A-C9-H9B	109.5
N3-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5

Symmetry code: (i) $x-y+1 / 3,-y+2 / 3,-z+1 / 6$.

